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1 Pell’s primes

1.1 Theoretical necessities
1. What is 11

2 generator property?

2. How to determine C(OK)?

3. The equivalence classes in C(OK) are under the following relation:

a ∼ b ⇐⇒ ab−1 ∈ F(K) (the group of principal fractional ideals)

First we state a certain theorem from the lectures.

Theorem 1.1: Inert, split and ramified primes of Z in OQ(
√

m)

Let p ∈ P be a rational prime. Then ⟨p⟩ factorizes as follows in OQ(
√

m):

• if p | m, then ⟨p⟩ = ⟨p,
√

m⟩2

• if p = 2, then


if m ≡ 3 (mod 4) : ⟨p⟩ = ⟨2, 1 +

√
m⟩2

if m ≡ 1 (mod 8) : ⟨p⟩ = ⟨2, 1+
√

m
2 ⟩ · ⟨2, 1−

√
m

2 ⟩
if m ≡ 5 (mod 8) : ⟨p⟩ is inert

• else:
if m ≡ n2 (mod p) : ⟨p⟩ = ⟨p, n +

√
m⟩ · ⟨p, n −

√
m⟩

if m ̸≡ n2 (mod p) : ⟨p⟩ is inert

1.2 Pell’s primes
If p ∤ m and p ̸= 2, then we know that ⟨p⟩ ramifies or splits if and only if m is a quadratic
residue mod p.

If p splits then we know that the ideal ⟨p⟩ must be a product of at least two ideals. Since
p is an element of the base field in a quadratic extension, it holds that N(⟨p⟩) = p2. Since
norms of ideals, like norms of elements, lie in the base fields, which means that the norms
of the decomposition ideals must multiply to give p2. Since we define the norm of an ideal
a⊴ OK as OK/a, the norm of a equals 1 when a = OK , which can’t occur if ⟨p⟩ splits.

It follows that ⟨p⟩ splits into two prime ideals, each of which has norm p. Hence there
exists an element in each of these ideals, which has the norm p.

It hence follows that for a fixed d, the diophantine equation

x2 + dy2 = p

has a solution x, y ∈ Z and p ∈ P if and only if d is a square modulo p.
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2 Weak approximation theorem
We state the following less-known cousin of the Chinese remainder theorem.

Theorem 2.1: Weak approximation theorem

For all prime ideals p1, p2, . . . , pn of a Dedekind domain D and for all choices of
integers e1, e2, . . . , en there exists x ∈ D, such that

⟨p⟩ = pe1
1 pe2

2 . . . pen
n · J,

where J ⊴ D is comaximal to every pi.

We use this theorem to deduce the one and a half generator property of Dedekind domains.

Theorem 2.2: One-and-a-half generator property

We wish to show that in any Dedekind domain D, for any I⊴D and for all x ∈ I \{0},
there exists an y ∈ I, such that

I = ⟨x, y⟩.

Proof. Decompose the ideal I = p1
e1p2

e2 . . . pen
n . It is clear that ⟨x⟩ ⊆ I. Factorize the

ideal ⟨x⟩ as follows:
⟨x⟩ = p

e′
1

1 p
e′

2
2 . . . pe′

n
n qv1

1 qv2
2 . . . qvm

m .

Clearly, ∀ 0 ≤ i ≤ n : e′
i ≥ ei. Since ⟨x, y⟩ = ⟨x⟩ + ⟨y⟩, we seek y, such that

νpi
(⟨y⟩) = ei and νqj

(⟨y⟩) = 0

∀ 0 ≤ i ≤ n and ∀ 0 ≤ j ≤ m. However the existence of such a y is ensured by the weak
approximation theorem. It is easy to check that the ideal ⟨x, y⟩ indeed equals I, by well
known properties of the p-adic valuation function.
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3 Determining OK

Lemma 3.1

A Dedekind domain K is a PID if and only if it is a UFD.

We define the following equivalence relation on elements of F(K) - the group of fractional
ideals of the Dedekind domain K:

a ∼ b ⇐⇒ ab−1 ∈ F(K).

Then the following theorem holds (I also definitely know how to prove this theorem, but
choose not to :P)

Theorem 3.2: Minkowski’s theorem

Let OK be the ring of integers of a number field K. Then for all x ∈ C(OK) there
exists I ⊴ OK such that:

x = [I]∼ and N(I) ≤ λK ,

where λK is the Minkowski bound, defined as follows:

λk = n!
nn

( 4
π

)s √
|disc(O)K|,

where n = [K : Q] and s is the number of pairs of complex embdeddings of K into C.

Since every equivalence class has a representative, it follows we only need to check ideals
⟨p⟩, to determine the class group - usually we determine its order and then use some
arguments regarding the order of elements to pinpoint it exactly.

Now the question becomes: »Which ideals of the form ⟨p⟩ are prime/maximal in OK?«.
The answer is - look at OK/⟨p⟩ and see if its a field/domain.
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