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Zapiski sledijo avtorjevem predavanju na pripravah za mednarodna
matematična tekmovanja. Za vse napake ter netočnosti je odgovoren
avtor sam. Če imate vprašanje ali popravek, se obrnite na e-poštni

naslov zgoraj.

Zahvaljujem se Luku Horjaku za pomoč pri urejanju ter mnoge
nasvete.

Lema o dvigu eksponenta je podobna
Svetemu rimskem cesarstvu; ni sveto,

ni rimsko in niti ni cesarstvo.

prirejeno po Voltairu
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1 Uvod
Na matematičnih tekmovanjih se pogosto pojavijo razlike oziroma vsote istih potenc na-
ravnih števil. Ta izroček je namenjen predstavljanju različnih metod, ki jih lahko upora-
bimo, ko se soočamo s takimi izrazi.

Brez dokaza navedemo naslednji trditvi, ki sta vam gotovo znani.

Trditev 1.1. Za vse a, b ∈ R ter vse n ∈ N velja

an − bn = (a − b)
(
an−1 + an−2b + · · · + abn−2 + bn−1

)
= (a − b)

(
n−1∑
i=0

aibn−1−i

)
.

Če je n lih, velja še

an + bn = (a + b)(an−1 − an−2b + an−3b2 + · · · + a2bn−3 − abn−2 + bn−1)

= (a + b)
(

n−1∑
i=0

(−1)iaibn−1−i

)
.

Izrek 1.2 (Binomski izrek). Naj bosta a, b ∈ R ter n ∈ N. Tedaj velja

(a + b)n =
n∑

i=0

(
n

i

)
aibn−i.
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1.1 Naloge za vajo
Naloga 1.3. Naj bodo a, m in n naravna števila. Pokaži, da je

gcd(an − 1, am − 1) = agcd(m,n) − 1.

Definicija 1.4. Za naravni števili a, n imenujemo d red a modulo n, če je d najmanjše
naravno število, za katerega velja ad = 1 (mod n). Če ima a red po modulu n označimo
d = ordn(a).

Naloga 1.5 (Red elementa).

• Pokaži, da če je gcd(a, n) = 1, potem obstaja ordn(a).

• Pokaži, da če za ℓ ∈ N velja aℓ = 1 (mod n), potem red obstaja in velja ordn(a) | ℓ.

• Naj bo n = p praštevilo in a ∈ N naravno število tuje p. Pokaži, da števila{
1, a, . . . , ad−1

}
puščajo različne ostanke po modulu p.

• Naj bo a naravno število, ki je tuje praštevilu p. Pokaži, da ordp(a) | p − 1.
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2 Pregled p-adične valuacije

Definicija 2.1: p-adična valuacija

Naj bo p ∈ P ter n ∈ N. p-adična valuacija števila n je tako nenegativno celo število
νp(n), da velja

pνp(n) | n in pνp(n)+1 ∤ n.

Lema 2.2 (Alternativna karakterizacija p-adičnosti). νp(n) je ravno potenca pra-
faktorja p, ki nastopa v praštevilskem razcepu n. Osnovni izrek aritmetike tako na alter-
nativen način karakterizira p-adično valuacijo, namreč

n =
∏
p∈P

pνp(n).

Naslednje lastnosti so po alternativni karakterizaciji p-adičnosti očitne.

Izrek 2.3

Za x, y ∈ N velja:
• νp(xy) = νp(x) + νp(y)
• νp(xy) = y · νp(x)
• νp(x + y) ≥ min {νp(x), νp(y)}. Če velja νp(x) ̸= νp(y), potem sledi enakost.

p-adična valuacija je daleč najuporabnejša pri multiplikativnih problemih – tistih, ki pre-
težno sestojijo iz množenja ter potenciranja, kar zrcali tudi razlika med prvima dvema ter
tretjo točko zgornjega izreka. Šibkost p-adične valuacije leži v seštevanju; pri slednjem je
v splošnem najuporabnejši Evklidov algoritem.

Spomnimo se še naslednjih dveh konceptov iz teorije števil, katera se zelo lepo izrazita s
p-adičnostmi.

Trditev 2.4. Naj bodo a1, a2, · · · , an naravna števila. Z oznakama gcd in lcm označujemo
funkciji največji skupni delitelj in najmanjši skupni večkratnik. Velja:

gcd(a1, . . . , an) =
∏
p∈P

pmin{νp(a1),νp(a2),··· ,νp(an)}

ter
lcm(a1, a2, . . . , an) =

∏
p∈P

pmax{νp(a1),νp(a2),··· ,νp(an)}.

Naslednji izrek ponovno prikaže moč p-adične valuacije pri mulitplikativnih problemih.

Definicija 2.5. Funkcija celi del je funkcija ⌊·⌋ : R 7→ Z, ki realnemu številu dodeli naj-
večje celo število, ki ne presega tega realnega števila. Se pravi, funkcija celi del realnemu
številu x pripiše tako celo število n = ⌊x⌋, da velja

n ≤ x < n + 1.
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Velja na primer ⌊π⌋ = 3, ⌊−e⌋ = −3 ter ⌊2⌋ = 2.

Pogosto je uporabno definirati funkcijo neceli del s predpisom {x} = x − ⌊x⌋, saj po
definiciji sledi 0 ≤ {x} < 1, kar omogoča bolj intuitivno omejevanje vrednosti.

Izrek 2.6: Legendrova formula

Naj bo n ∈ N ter p ∈ P. Potem velja

νp(n!) =
∞∑

i=1

⌊
n

pi

⌋
.

Dokaz. Opazimo, da za vse dovolj velike j ∈ N velja pj > n, kar pomeni, da so vsi členi
vsote z indeksi večjimi od j enaki 0. Sledi, da je vsota na desni končna. Sedaj pokažimo
enakost. Obstaja natanko

⌊
n
p

⌋
števil med 1 in n, ki so deljiva s p. Izmed teh jih je

⌊
n
p2

⌋
s

p deljivo vsaj dvakrat,
⌊

n
p3

⌋
s p deljivo vsaj trikrat in podobno naprej.

Naj množica Aj vsebuje vsa števila med 1 in n, ki imajo p-adičnost vsaj j – sledi torej
|Aj| =

⌊
n
pj

⌋
. Očitno je

A0 ⊋ A1 ⊋ A2 ⊋ A3 ⊋ · · ·

Za vsako število, ki ima p-adičnost natanko j, velja, da je v množici števil s p-adičnostjo
vsaj j ter ni v množici števil p-adičnosti vsaj j + 1. Sledi, da je števil med 1 in n s
p-adičnostjo natanko j enako

⌊
n
pj

⌋
−
⌊

n
pj+1

⌋
. Števila med 1 in n s p-adičnostjo natanko j

tako p-adičnosti fakultete doprinesejo

j ·
(⌊

n

pj

⌋
−
⌊

n

pj+1

⌋)

faktorjev p. Sledi, da je

νp(n!) =
∞∑

i=1
i ·
(⌊

n

pi

⌋
−
⌊

n

pi+i

⌋)

=
∞∑

i=1
i ·
⌊

n

pi

⌋
−

∞∑
i=1

(i − 1) ·
⌊

n

pi

⌋

=
∞∑

i=1
(i − (i − 1)) ·

⌊
n

pi

⌋

=
∞∑

i=1

⌊
n

pi

⌋
.

Trditev 2.7. Naj bo n ∈ N ter p ∈ P. Potem velja

νp(n!) = n − sp(n)
p − 1 ,

kjer sp(n) označuje vsoto števk števila n zapisanega v bazi p.

6



Dokaz zgornje oblike Legendrove formule je razmeroma preprost, če poznamo Legendrovo
formulo, ki vsebuje funkcijo celi del. Število n zapišemo v bazi p, nato pa se spomnimo
na vsoto geometrijske vrste ter kaj

⌊
n
pi

⌋
predstavlja v zapisu n v bazi p.

Komentar 2.8: Neenakost p-adičnosti fakultete

Izpostavljeni dejstvi o p-adični valuaciji fakultete sta elegantni, a pogosto posebej
uporabni, če ju povežemo z naslednjima ocenama, ki veljata za n > 0.

K∑
i=1

(
n

pi
− 1

)
≤ νp(n!) =

∞∑
i=1

⌊
n

pi

⌋
≤

K∑
i=1

n

pi

−K +
K∑

i=1

n

pi
≤ νp(n!) ≤

K∑
i=1

n

pi

−K + n ·
1
p

− 1
pK+1

1 − 1
p

≤ νp(n!) ≤ n ·
1
p

− 1
pK+1

1 − 1
p

n − n
pK

p − 1 − K < n ·
1 − 1

pK

p − 1 − K ≤ νp(n!) ≤ n ·
1 − 1

pK

p − 1 <
n

p − 1 ,

kjer je K = max {x ∈ N | px ≤ n} =
⌊
logp(n)

⌋
, saj so sumandi vsote v Legendrovi

formuli enaki 0 za i ≥ K.
Lahko dobimo boljšo zgornjo mejo upoštevajoč trditev 2.7, saj je sp(n) ≥ 1. Tako je
naša najboljša meja

n ·
1 − 1

pK

p − 1 −
⌊
logp(n)

⌋
≤ νp(n!) ≤ n − 1

p − 1 ,

oziroma upoštevajoč n < pK+1 rahlo poenostavljeno

n − p

p − 1 −
⌊
logp(n)

⌋
≤ νp(n!) ≤ n − 1

p − 1 <
n

p − 1 .

Uporabnost teh neenakosti postane očitna pri reševanju Diofantskih enačb.

Na ne preveč zapletenem problemu prikažimo metodo p-adičnosti.

Naloga 2.9. Naj bosta a in b celi števili, za kateri velja

a | b2 | a3 | b4 | · · ·

Pokaži, da je a = b.

Rešitev. Prevedimo problem deljivosti na problem p-adičnosti. Iz osnovnega izreka arit-
metike opazimo, da če x | y, potem za vsa praštevila p velja νp(x) ≤ νp(y). Pogoj naloge
se tako prevede na: za vse p ∈ P in za vse i ∈ N velja

νp(a2i−1) ≤ νp(b2i) in νp(b2i) ≤ νp(a2i+1),
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kar je ekvivalentno

(2i − 1) · νp(a) ≤ (2i) · νp(b) in (2i) · νp(b) ≤ (2i + 1) · νp(a).

Tako sledi
2i − 1

2i
= 1 − 1

2i
≤ νp(b)

νp(a) ≤ 2i + 1
2i

= 1 + 1
2i

Če je kvocient νp(a)
νp(b) različen od 1, lahko seveda najdemo tak indeks i, da je kvocient bodisi

manjši od 1 − 1
2i

, bodisi večji od 1 + 1
2i

, zaradi česar sledi, da je νp(a)
νp(b) = 1 za vse p ∈ P.

Po trditvi 2.2 sledi a = b.
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2.1 Naloge za vajo
Naloga 2.10. Pokaži, da ∑n

i=1
1
i

ni naravno število za n > 1.

Naloga 2.11. Pokaži, da ∑n
i=1

1
2i+1 ni naravno število za n ∈ N

Naloga 2.12. Dokaži, da za vse n ∈ N velja

n!
∣∣∣∣∣

n−1∏
k=0

(
2n − 2k

)
.
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3 Dvig eksponenta
Preden nadaljujemo z lemo o dvigu eksponenta, je obvezno rešiti naslednjo nalogo, da
trditev leme ponotranjimo.

Naloga 3.1. Naj bo k nenegativno celo število. Pokaži, da je ν3(23k + 1) = k + 1.

Rešitev. Trditev naloge pokažemo z indukcijo na k. V primeru k ∈ {0, 1} je trditev
očitna. Denimo, da je k ≥ 2 ter ν3(23k−1 + 1) = k. V jeziku indukcije naša naloga trdi, da
v prehodu k → k + 1 izraz 23k−1 + 1 pridobi natanko en faktor števila 3. Tako je zadosti
pokazati, da je

23k + 1
23k−1 + 1

deljivo s 3, ni pa deljivo z 9. Sedaj lahko razvijemo

23k + 1
23k−1 + 1 =

(
23k−1)2

− 23k−1 + 1 = 22·3k−1 − 23k−1 + 1 = (−1)2 − (−1) + 1 = 3 (mod 3k).

Ker je k ≥ 2 (zato smo tudi preverili dva bazna primera), je 3 ̸= 0 (mod 3k).

Lema 3.2: Dvig eksponenta za p ̸= 2

Naj bo p liho praštevilo ter x, y celi števili tuji p.
• Če p | x − y, velja

νp(xn − yn) = νp(x − y) + νp(n).
• Če p | x + y in je n lih, velja

νp(xn + yn) = νp(x + y) + νp(n).

Lema 3.3: Dvig eksponenta za p = 2

Naj bosta x, y lihi celi števili.
• Če 4 | x − y, velja

ν2(xn − yn) = ν2(x − y) + ν2(n).
• Če 2 | x − y in n sod, velja

ν2(xn − yn) = ν2(x2 − y2) + ν2

(
n

2

)
= ν2(x + y) + ν2(x − y) + ν2(n) − 1.

Obe lemi lahko dokažemo z indukcijo na vp(n). Dokaza nista zelo originalna, sta pa
nekoliko bolj tehnično zahtevna, kot bi si želeli. Posledično dokazov ne navedemo tu,
zainteresirani bralec pa ju lahko najde v [1] ali [3].

Na mestu je naslednji opomnik Evana Chena. Če se na katerikoli točki uporabi leme o
dvigu eksponenta znajdete v situaciji, ko je νp(x ± y) = 0, ste gotovo pozabili preveriti
enega izmed pogojev za veljavnost leme.
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Komentar 3.4

K lemi o dvigu eksponenta pripada še naslednja standardna metoda. Lema nam
magično poda neko enakost, ki na eni strani morda vsebuje naše naravne spremenljivke,
na drugi strani pa je vsota nekih p-adičnosti. Zelo ohlapna ocena

νp(n) ≤ logp(n),

ki sledi iz deljivosti, ter omenjene meje glede p-adičnosti fakultete so pogosto uporabne
za dokazovanje protislovnosti po velikosti. Opozorimo, da spodnje meje na νp(n)
zares nimamo, pogosto pa lahko vse faktorje p iz n izpostavimo brez kakšne izgube
splošnosti.
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3.1 Naloge
Naloga 3.5. Naj bodo a, b, c ∈ N, za katera velja c | ac − bc. Pokaži, da

c

∣∣∣∣∣ ac − bc

a − b
.

Naloga 3.6. Določi vse n ∈ N, za katere obstajata tuji števili x, y ∈ N ter k > 1, da

3n = xk + yk.

Naloga 3.7. Najdi vse pare naravnih števil (n, m), ki rešijo enačbo

(n − 1)! + 1 = nm.

Naloga 3.8 (AIME 2018). Najdi najmanjše naravno število n, za katero se zapis števila
3n v bazi 143 konča s števkama 01.

Naloga 3.9 (ZDA 2008). Pokaži, da n7 + 7 ni popolni kvadrat za nobeno n ∈ N.

Naloga 3.10 (MMO 1999, posplošitev naloge 4). Naj bosta x, p celi števili, za kateri
velja

xp−1 | (p − 1)x + 1.

• Določi vse pare (x, p), če je p praštevilo in x ≤ 2p.

• Določi vse pare (x, p), če je p praštevilo.
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4 Zsigmondyjeva izreka
Zsigmondyjev izrek je zelo uporaben pri izrazih oblike an ± bn. Med drugim nam pokaže,
da izrazi te oblike skoraj nikoli niso trivialne potence. Pove nam, da ko eksponent n
višamo generiramo nova praštevila.

Izrek 4.1: Zsigmondyjev izrek za razlike potenc

Naj bosta a, b ∈ N tuji si števili ter naj bo n > 1 naravno število. Tedaj obstaja
praštevilski delitelj an − bn, ki ni praštevilski delitelj nobenega izmed števil ak − bk za
k ∈ {1, 2, . . . , n − 1}, z naslednjimi izjemami:

• 26 − 16 = 32 · 7, kjer je 3 = 22 − 1 ter 7 = 23 − 1.
• n = 2 ter a+ b = 2ℓ za nek ℓ ≥ 1, saj je a2 − b2 = (a− b)(a+ b), edini praštevilski

delitelj a + b je 2, ki je tudi praštevilski delitelj a − b.
Tak praštevilski delitelj imenujemo primitivni praštevilski delitelj.

Dokaz. Dokaz tega izreka presega nivo priprav na matematične olimpijade. Dokaz med
drugim uporabi lemo o dvigu eksponenta ter nekatere lastnosti ciklotomičnih polinomov.

Izrek 4.2: Zsigmondyjev izrek za vsote potenc

Naj bosta a, b ∈ N tuji si števili ter n > 1 naravno število. Tedaj obstaja praštevilski
delitelj an + bn, ki ne deli nobenega izmed števil ak + bk za k ∈ {1, 2, . . . , n − 1}
z izjemo primera 23 + 13 = 32 = (21 + 11)2. Tak praštevilski delitelj imenujemo
primitivni praštevilski delitelj.

Dokaz. To obliko Zsigmondyjevega izreka lahko dokažemo z uporabo Zsigmondyjevega
izreka za razlike potenc upoštevajoč a2n −a2n = (an −bn)(an +bn). Primitivni praštevilski
delitelj a2n − b2n mora tako biti vsebovan v an + bn. Obenem ta delitelj ne more biti
vsebovan v ak + bk za k ∈ {1, 2, . . . , n − 1}, saj bi tedaj ta isti praštevilski delitelj delil
a2k − b2k = (ak + bk)(ak − bk).

Ta izreka sta mišljena bolj kot zanimivost kot dejansko uporabna izreka pri reševanju
nalog iz teorije števil. Te čase so člani komisij za izbiro nalog bolj teoretično podkovani
ter so seznanjeni s tem izrekom. Posledično je zelo neverjetno, da bi Zsigmondyjev izrek
trivializiral katerokoli nalogo na tekmovanju.

Še zmeraj pa sta izreka lahko uporabna; nekatere podprimere, ki bi jih v preteklosti
morali dejansko obravnavati, lahko morda samo »odpišemo« z uporabo Zsigmondyjevega
izreka. Prav tako lahko izreka ovržeta morebitne domneve, ki jih postavimo, kar nam
lahko prihrani dosti časa.

Naloga 4.3. Najdi čim več nalog v tem izročku, ki jih Zsigmondyjev izrek trivializira.
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Naloga 4.4. Naj bo p ∈ P ter m > 1 naravno število. Pokaži, da ima enačba

xp + yp

2 = (x + y

2 )m

rešitev različno od (x, y) = (1, 1) natanko tedaj, ko je m = p.
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