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Zapiski sledijo avtorjevem predavanju na pripravah za mednarodna
matematicna tekmovanja. Za vse napake ter netoc¢nosti je odgovoren
avtor sam. Ce imate vprasanje ali popravek, se obrnite na e-postni
naslov zgoraj.

Zahvaljujem se Luku Horjaku za pomoc¢ pri urejanju ter mnoge
nasvete.

Lema o dvigu eksponenta je podobna
Svetemu rimskem cesarstvu; ni sveto,
ni rimsko in niti ni cesarstvo.

prirejeno po Voltairu
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1 Uvod

Na matemati¢nih tekmovanjih se pogosto pojavijo razlike oziroma vsote istih potenc na-
ravnih stevil. Ta izrocek je namenjen predstavljanju razlicnih metod, ki jih lahko upora-
bimo, ko se sooc¢amo s takimi izrazi.

Brez dokaza navedemo naslednji trditvi, ki sta vam gotovo znani.

Trditev 1.1. Za vse a,b € R ter vse n € N velja

" =" =(a—b) (a" " +a" b+ 4 ab" 2+ b") = (a—b) (Zab” - )

Ce je n lih, velja 3e

a” +bn — (a+ b)(an—l _ an—2b+an—3b2 4. +a2bn—3 _ abn—Z + bn—l)

— (a+b) (g(—l)iaib”_l_i> .

=0

Izrek 1.2 (Binomski izrek). Naj bosta a,b € R ter n € N. Tedaj velja

oy =3 (")ar

=0



1.1 Naloge za vajo

Naloga 1.3. Naj bodo a,m in n naravna Stevila. PokaZi, da je

ged(a® —1,a™ — 1) = @& — 1

Definicija 1.4. Za naravni stevili a,n imenujemo d red a modulo n, ¢e je d najmanjse
naravno $tevilo, za katerega velja a® = 1 (mod n). Ce ima a red po modulu n oznac¢imo
d = ord,(a).

Naloga 1.5 (Red elementa).

o Pokazi, da ce je ged(a,n) = 1, potem obstaja ord,(a).

Pokazi, da ce za £ € N velja a* =1 (mod n), potem red obstaja in velja ord,(a) | £.

Naj bo n = p prastevilo in a € N naravno stevilo tuje p. PokaZi, da stevila
{1, a,. .. ,adli puscajo razlicne ostanke po modulu p.

Naj bo a naravno stevilo, ki je tuje prastevilu p. Pokazi, da ord,(a) | p — 1.



2 Pregled p-adi¢ne valuacije

Definicija 2.1: p-adi¢na valuacija

Naj bo p € P ter n € N. p-adicna valuacija Stevila n je tako nenegativno celo stevilo
vp(n), da velja
pup(n) | n in pl’p(n)+1 ,i’n_

Lema 2.2 (Alternativna karakterizacija p-adi¢nosti). v,(n) je ravno potenca pra-
faktorja p, ki nastopa v prastevilskem razcepu n. Osnovni izrek aritmetike tako na alter-
nativen nacin karakterizira p-adicno valuacijo, namrec

n = H p”p(”)‘

peP

Naslednje lastnosti so po alternativni karakterizaciji p-adi¢nosti ocitne.

Izrek 2.3

Za z,y € N velja:
o vp(zy) = vp() + vp(y)
o yp(2¥) =y - v(7)

o vp(z +y) > min {v,(z),,(y)}. Ce velja v,(x) # v,(y), potem sledi enakost.

p-adi¢na valuacija je dale¢ najuporabnejsa pri multiplikativnih problemih — tistih, ki pre-
tezno sestojijo iz mnozenja ter potenciranja, kar zrcali tudi razlika med prvima dvema ter
tretjo tocko zgornjega izreka. Sibkost p-aditne valuacije lezi v seStevanju; pri slednjem je
v sploSnem najuporabnejsi Evklidov algoritem.

Spomnimo se Se naslednjih dveh konceptov iz teorije Stevil, katera se zelo lepo izrazita s
p-adi¢nostmi.

Trditev 2.4. Naj bodo ay,as,--- ,a, naravna stevila. Z oznakama ged in lem oznacujemo
funkciji najvecji skupni delitelj in najmanjsi skupni veckratnik. Velja:

ged(aq, ..., an) = H printrr ) nloa) s vplan)}
pEP
ter
lem(ay, as, . .., ay) = [ po={ranwp(a) - vp(an)}
peEP

Naslednji izrek ponovno prikaze moc¢ p-adi¢ne valuacije pri mulitplikativnih problemih.

Definicija 2.5. Funkcija celi del je funkcija |-| : R — Z, ki realnemu stevilu dodeli naj-
vecje celo stevilo, ki ne presega tega realnega stevila. Se pravi, funkcija celi del realnemu
Stevilu x pripise tako celo Stevilo n = |z, da velja

n<zx<n-+l1.



Velja na primer |7] =3, [—e| = —3 ter |2| = 2.

Pogosto je uporabno definirati funkcijo neceli del s predpisom {z} = = — |z], saj po
definiciji sledi 0 < {z} < 1, kar omogo¢a bolj intuitivno omejevanje vrednosti.

Izrek 2.6: Legendrova formula

Naj bo n € N ter p € P. Potem velja

v, (nl) = fj BJ .

=1

Dokaz. Opazimo, da za vse dovolj velike j € N velja p/ > n, kar pomeni, da so vsi ¢leni
vsote z indeksi veéjimi od 7 enaki 0. Sledi, da je vsota na desni konc¢na. Sedaj pokazimo

enakost. Obstaja natanko {%J stevil med 1 in n, ki so deljiva s p. Izmed teh jih je L%J S

p deljivo vsaj dvakrat, LP%J s p deljivo vsaj trikrat in podobno naprej.

Naj mnozica A; vsebuje vsa Stevila med 1 in n, ki imajo p-adi¢nost vsaj j — sledi torej
|A,| = L%J Ocitno je

A2 A DA DA D -
Za vsako stevilo, ki ima p-adi¢nost natanko j, velja, da je v mnozici stevil s p-adi¢nostjo
vsaj j ter ni v mnozici stevil p-adi¢nosti vsaj 7 + 1. Sledi, da je Stevil med 1 in n s
p-adi¢nostjo natanko j enako I%J — L%J Stevila med 1 in n s p-adi¢nostjo natanko j
tako p-adi¢nosti fakultete doprinesejo

(115

faktorjev p. Sledi, da je

= 1l = P
=S- G-+ | 5]
-2 |5 :

kjer s,(n) oznacuje vsoto stevk stevila n zapisanega v bazi p.



Dokaz zgornje oblike Legendrove formule je razmeroma preprost, ¢e poznamo Legendrovo
formulo, ki vsebuje funkcijo celi del. Stevilo n zapiSemo v bazi p, nato pa se spomnimo
na vsoto geometrijske vrste ter kaj L%J predstavlja v zapisu n v bazi p.

Komentar 2.8: Neenakost p-adi¢nosti fakultete

Izpostavljeni dejstvi o p-adi¢ni valuaciji fakultete sta elegantni, a pogosto posebej
uporabni, ¢e ju povezemo z naslednjima ocenama, ki veljata za n > 0.

K o)
> (L-1) <t =3 5| <3.2
o \P i=1 LP i=1P
K K
K+ S <ym) <> =
i=1 i=1 P
1_ _1 1 1
—K+n-t pK1H <ypn)<n-Z pK1+1
-1 =1
n— 2 — 1— L
" _K<n " _K<uyn)<n LR
p— p—1 p—1 p-1

kjer je K = max{zx e N|p®* <n} = {logp(n)J, saj so sumandi vsote v Legendrovi
formuli enaki 0 za 7 > K.

Lahko dobimo boljso zgornjo mejo upostevajo¢ trditev 2.7, saj je s,(n) > 1. Tako je
nasa najboljsa meja

1
— oK L
n- —pl — {logp(n)J < yy(nl) < o1’
oziroma upostevajo¢ n < pX*! rahlo poenostavljeno
n—p | n—1 n
p—1 [log, ()] < p(n)) < p—1 p-1

Uporabnost teh neenakosti postane oc¢itna pri resevanju Diofantskih enach.

Na ne prevec zapletenem problemu prikazimo metodo p-adi¢nosti.

Naloga 2.9. Naj bosta a in b celi Stevili, za kateri velja
alb?|a® bt

Pokazi, da je a =b.

Resitev. Prevedimo problem deljivosti na problem p-adi¢nosti. Iz osnovnega izreka arit-
metike opazimo, da ¢e = | y, potem za vsa prastevila p velja v,(x) < v,(y). Pogoj naloge
se tako prevede na: za vse p € P in za vse ¢ € N velja

(@) < pB?) i () < ryla® )

Vp



kar je ekvivalentno

(20 — 1) - vp(a) < (2i) - vp(b) in (20) - v,(b) < (20 + 1) - vp(a).

Tako sledi 0 1 . ) 0 11 )

il lom® 2wl g 1

2i 2i ~ vy(a) 2i 2i
Ce je kvocient ';’;—(é)) razlicen od 1, lahko seveda najdemo tak indeks ¢, da je kvocient bodisi
manj$i od 1 — o, bodisi vedji od 1+ 5, zaradi cesar sledi, da je ZZEZ; =1zavsepelP.
Po trditvi 2.2 sledi a = b. O



2.1 Naloge za vajo

Naloga 2.10. Pokazi, da 3", X ni naravno stevilo za n > 1.

=1 4
Naloga 2.11. Pokazi, da >} ﬁ ni naravno Stevilo za n € N

Naloga 2.12. Dokazi, da za vse n € N velja

n—1

IT (2" -2").

k=0

n!




3 Dvig eksponenta

Preden nadaljujemo z lemo o dvigu eksponenta, je obvezno resiti naslednjo nalogo, da
trditev leme ponotranjimo.

Naloga 3.1. Naj bo k nenegativno celo stevilo. PokaZi, da je v3(2%° +1) =k + 1.

Resitev. Trditev naloge pokazemo z indukcijo na k. V primeru k& € {0,1} je trditev
o¢itna. Denimo, da je k > 2 ter 15(23" " +1) = k. V jeziku indukcije naga naloga trdi, da
v prehodu k — k + 1 izraz 237 41 pridobi natanko en faktor stevila 3. Tako je zadosti
pokazati, da je

2" 11

23k—1 +1
deljivo s 3, ni pa deljivo z 9. Sedaj lahko razvijemo

2L ()P gt 2 gt ) (L1 (1) 4123 (mod 3
W_< )‘ +1= - +1=(-1)"—(-1)+1=3 (mod 3%).
Ker je k > 2 (zato smo tudi preverili dva bazna primera), je 3 # 0 (mod 3F). O]

Lema 3.2: Dvig eksponenta za p # 2

Naj bo p liho prastevilo ter x,y celi stevili tuji p.
e Cepl|x—y, velja
vp(a" —y") = vp(x —y) + v(n).
e Cep|z+yinjen lih, velja

(" +y") = vp(2 + y) + 1p(n).

Lema 3.3: Dvig eksponenta za p = 2

Naj bosta x,y lihi celi stevili.
e Ced|z—y, velja
(2" —y") = w(x — y) + 1a(n).

e Ce2|x—yinn sod, velja

V(™ — y") = »p(2® — ¥*) + vy (Z) =z +y)+ 1z —y)+rain) — 1

Obe lemi lahko dokazemo z indukcijo na v,(n). Dokaza nista zelo originalna, sta pa
nekoliko bolj tehni¢no zahtevna, kot bi si zZeleli. Posledi¢no dokazov ne navedemo tu,
zainteresirani bralec pa ju lahko najde v [1] ali [3].

Na mestu je naslednji opomnik Evana Chena. Ce se na katerikoli tocki uporabi leme o
dvigu eksponenta znajdete v situaciji, ko je v,(z £ y) = 0, ste gotovo pozabili preveriti
enega izmed pogojev za veljavnost leme.
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Komentar 3.4

K lemi o dvigu eksponenta pripada Se naslednja standardna metoda. Lema nam
magic¢no poda neko enakost, ki na eni strani morda vsebuje nase naravne spremenljivke,
na drugi strani pa je vsota nekih p-adi¢nosti. Zelo ohlapna ocena

vp(n) < log,(n),

ki sledi iz deljivosti, ter omenjene meje glede p-adi¢nosti fakultete so pogosto uporabne
za dokazovanje protislovnosti po velikosti. Opozorimo, da spodnje meje na v,(n)
zares nimamo, pogosto pa lahko vse faktorje p iz n izpostavimo brez kaksne izgube
splosnosti.
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3.1 Naloge
Naloga 3.5. Naj bodo a,b,c € N, za katera velja ¢ | a® — b°. PokaZi, da

at — b°

a—>b

C

Naloga 3.6. Doloci vse n € N, za katere obstajata tuji stevili x,y € N ter k > 1, da

3" =2k P

Naloga 3.7. Najdi vse pare naravnih stevil (n,m), ki resijo enacbo

(n—1!+1=n™

Naloga 3.8 (AIME 2018). Najdi najmanjse naravno stevilo n, za katero se zapis Stevila
3" v bazi 143 konca s stevkama O1.

Naloga 3.9 (ZDA 2008). Pokazi, da n” + 7 ni popolni kvadrat za nobeno n € N.
Naloga 3.10 (MMO 1999, posplositev naloge 4). Naj bosta x,p celi stevili, za kateri
velja
7 (p—-1)" + 1
» Doloci vse pare (z,p), ce je p prastevilo in x < 2p.

o Doloci vse pare (x,p), ce je p prastevilo.
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4 Zsigmondyjeva izreka

Zsigmondyjev izrek je zelo uporaben pri izrazih oblike a™ 4+ b". Med drugim nam pokaze,
da izrazi te oblike skoraj nikoli niso trivialne potence. Pove nam, da ko eksponent n
visamo generiramo nova prastevila.

Izrek 4.1: Zsigmondyjev izrek za razlike potenc

Naj bosta a,b € N tuji si stevili ter naj bo n > 1 naravno stevilo. Tedaj obstaja
prastevilski delitelj a™ — b", ki ni prastevilski delitelj nobenega izmed $tevil a* — b* za
ke {1,2,...,n— 1}, z naslednjimi izjemami:
e 26 -10=32.7 kjerje3 =22 —1ter 7=2%—1.
e n=2tera+b=2"zanek £ > 1, sajjea®—b? = (a—0b)(a+0b), edini prastevilski
delitelj a + b je 2, ki je tudi prastevilski delitelj a — b.

Tak prastevilski delitelj imenujemo primitivni prastevilski delitels.

Dokaz. Dokaz tega izreka presega nivo priprav na matemati¢ne olimpijade. Dokaz med
drugim uporabi lemo o dvigu eksponenta ter nekatere lastnosti ciklotomi¢nih polinomov.
O

Izrek 4.2: Zsigmondyjev izrek za vsote potenc

Naj bosta a,b € N tuji si stevili ter n > 1 naravno stevilo. Tedaj obstaja prastevilski
delitelj a™ + b*, ki ne deli nobenega izmed $tevil a* + 0% za k € {1,2,...,n -1}
7 izjemo primera 23 + 13 = 3% = (2! + 1!)2. Tak prastevilski delitelj imenujemo
primitivni prastevilski delitelj.

Dokaz. To obliko Zsigmondyjevega izreka lahko dokazemo z uporabo Zsigmondyjevega
izreka za razlike potenc upostevajo¢ a?" —a®" = (a" —b")(a™+b"). Primitivni prastevilski
delitelj a?™ — b*® mora tako biti vsebovan v a™ + b". Obenem ta delitelj ne more biti
vsebovan v a¥ + b* za k € {1,2,...,n — 1}, saj bi tedaj ta isti prastevilski delitelj delil
a?* — % = (a* + OF)(a¥ — bF). O

Ta izreka sta misljena bolj kot zanimivost kot dejansko uporabna izreka pri resevanju
nalog iz teorije stevil. Te ¢ase so ¢lani komisij za izbiro nalog bolj teoreticno podkovani
ter so seznanjeni s tem izrekom. Posledi¢no je zelo neverjetno, da bi Zsigmondyjev izrek
trivializiral katerokoli nalogo na tekmovanju.

Se zmeraj pa sta izreka lahko uporabna; nekatere podprimere, ki bi jih v preteklosti
morali dejansko obravnavati, lahko morda samo »odpiSemo« z uporabo Zsigmondyjevega
izreka. Prav tako lahko izreka ovrzeta morebitne domneve, ki jih postavimo, kar nam
lahko prihrani dosti casa.

Naloga 4.3. Najdi ¢im vec nalog v tem izrocku, ki jih Zsigmondyjev izrek trivializira.
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Naloga 4.4. Naj bo p € P ter m > 1 naravno stevilo. PokaZi, da ima enacba

P +yP
=

Tr+y
2

(——)"

resitev razlicno od (x,y) = (1,1) natanko tedaj, ko je m = p.
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