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1 Day 1

Problem 1.1

Let P ∈ R[x] with deg(P ) ≥ 2. For every x ∈ R, let ℓx ⊂ R2 be the line tangent to P
at the point x. Prove or disprove the following assertions.

• If P is an odd degree polynomial, then⋃
x∈R

ℓx = R2.

• If P is an even degree polynomial, then⋃
x∈R

ℓx ̸= R2.

Solution. In the answers to both questions we will make use of the following: the tangent
line to P at the point (α, P (α)) has equation

y = P ′(α)(x− α) + P (α).

First we will prove that the first assertion is true. Assume the assertion to be false and
let

(x0, y0) ∈ R2 \
⋃

x∈R
ℓx ̸= ∅.

Since the point (x0, y0) does not lie on any line tangent to P at some point, the equation

y0 = P ′(x)(x0 − x) + P (x)

has no real solutions in x. This is clearly equivalent to the polynomial

G(x) = P ′(x)(x0 − x) + P (x) − y0 = P (x) − xP ′(x) + x0P
′(x) − y0

having no real zeros. The leading term of xP ′(x) is nanx
n, where an is the leading coef-

ficient of P and n = deg(P ) ≥ 2, which means that the leading term of G has coefficient
an(1 − n) ̸= 0. In particular, G is odd since P is odd. But all polynomials of odd degree
have zeros, which is a contradiction. The assertion is hence true.

We will prove that the second assertion is also true. Let P be any non-constant even
degree polynomial. We know that

(x0, y0) ∈
⋃

x∈R
ℓx ⇐⇒ y0 = P ′(x)(x0 − x) + P (x) has a real solution in x.

The latter is equivalent to the polynomial

G(x) = P ′(x)(x0 − x) + P (x) − y0 = P (x) − xP ′(x) + x0P
′(x) − y0

having a zero for all (x0, y0) ∈ R2. A verbatim argument as above proves that G is of even
degree. It is well known that even degree polynomials are either bounded from above or
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bounded from below (this can be proven by containing the zeros in a closed interval and
noting that limits to ±∞ are equal, and then using the minimum or maximum on the
compact to bound the polynomial). But it is then clear that the polynomial can’t have
zeros for all (x0, y0) ∈ R2; take x0 = 0 and set y0 to be either larger or smaller than the
upper or lower bound of the polynomial P (x) − xP ′(x)
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Problem 1.2

Let f : R → R be twice continously differentiable. Suppose∫ 1

−1
f(x) dx = 0,

and f(−1) = f(1) = 1. Show that∫ 1

−1
(f ′′(x))2

dx ≥ 15

and determine all f , for which equality holds.

Solution. We begin by some preliminary calculations that follow from the fundamental
theorem of analysis. ∫ 1

−1
f ′(x) dx = f(x)

∣∣∣1
−1

= 0∫ 1

−1
f ′′(x) dx = f ′(x)

∣∣∣1
−1

= f ′(1) − f ′(−1)

Furthermore, we use integration by parts to establish some equalities.∫ 1

−1
f(x) dx = f(x)x

∣∣∣1
−1

−
∫ 1

−1
f ′(x)x dx =⇒

∫ 1

−1
f ′(x)x dx = 2∫ 1

−1
f ′(x) dx = f ′(x)x

∣∣∣1
−1

−
∫ 1

−1
f ′′(x)x dx =⇒

∫ 1

−1
f ′′(x)x dx = f ′(1) + f ′(−1)

2
∫ 1

−1
f ′(x)x dx = f ′(x)x2

∣∣∣1
−1

−
∫ 1

−1
f ′′(x)x2 dx =⇒

∫ 1

−1
f ′′(x)x2 dx = f ′(1) − f ′(−1) − 4

Now we use the Cauchy-Schwarz inequality on the space C([−1, 1]). It follows that(∫ 1

−1
f ′′(x)2 dx

)(∫ 1

−1
(αx2 + βx+ γ)2 dx

)
≥
(∫ 1

−1
αf ′′(x)x2 + βf ′′(x)x+ γf ′′(x) dx

)2

(∫ 1

−1
f ′′(x)2 dx

)(2α2

5 + 2(2αγ + β2)
3 + 2γ2

)
≥

(
α
∫ 1

−1
f ′′(x)x2 dx+ β

∫ 1

−1
f ′′(x)x dx+ γ

∫ 1

−1
f ′′(x) dx

)2

By using the established identities we conclude

(∫ 1

−1
f ′′(x)2 dx

)(2α2

5 + 2(2αγ + β2)
3 + 2γ2

)
≥ ((α + β + γ)f ′(1) + (−α + β − γ)f ′(−1) − 4α)2

.

Since we have no information about f ′(1) and f ′(−1) it would do us well to select the
coefficients α, β and γ in such a way that the coefficients of f ′(1) and f ′(−1) on the right
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side of the inequality evaluate to zero. By adding the two equations arising from this
observation it is clear that β = 0 and α = −γ ̸= 0 achieve this goal. We hence deduce

∫ 1

−1
f ′′(x)2 dx ≥ 16α2

α2(2
5 − 4

3 + 2) = 16
6−20+30

15
= 15,

which we wanted to show.

Now we turn to the question of which functions achieve equality. Observe that the value
of f outside of the interval [−1, 1] are irrelevant both for the problem’s conditions and
the problem’s conclusions. This means that if we add a function h ∈ C2(R) with support
disjoint from [−1, 1] to any function meeting the problem criteria and achieving equality,
the problem conditions are met and equality is still achieved by their sum. Hence we need
to consider only f ∈ C2([−1, 1]). Since C([−1, 1]) with the standard inner product forms
an inner product space, equality is achieved if and only if the two vectors are linearly
dependent. There hence exist constants ψ, θ ∈ R, not both zero, such that

ψf ′′(x) + θ(αx2 − α) = 0.

It is clear that in fact neither of the constants is zero, meaning

f ′′(x) = λ(αx2 − α) λ ∈ R.

By integrating this equation twice, then using the boundary condition and the fact that
the integral of f on [−1, 1] equals 0 to determine λ and α, we conclude that the only
function in C2([−1, 1]) achieving equality is

f(x) = −5x4 + 30x2 − 9
16 .

Hence any function achieving equality is of the form

f(x) = −5x4 + 30x2 − 9
16 + h(x),

where h ∈ C2(R) and h(x) = 0 for all x ∈ [−1, 1].
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Problem 1.3

Denote by S the set of all real symmetric 2025×2025 matrices of rank 1 whose entries
take values −1 or +1. Let A,B ∈ S be matrices chosen independently uniformly at
random. Find the probability that A and B commute.

Solution. Firstly, we will explore the structure of the elements of S. The following claim
is well-known.

Claim 1. If A ∈ Rn×n has rank 1, then there exist u, v ∈ Rn such that

A = uvT

For symmetric matrices of rank 1 we can prove the following stronger statement:

Claim 2. If A ∈ Rn×n is symmetric and has rank 1, then there exists a v ∈ Rn such that

A = λvvT , where λ ∈ {−1, 0, 1}.

Proof. We use the first claim and the symmetric property to deduce that

uvT = vuT =⇒ uivj = viuj ∀ 1 ≤ i.j ≤ n.

If ui and uj are nonzero, then xi

yi
= xj

yj
. This means that all non-zero coordinates of u and

v have the same ratio, hence u = αv for some α ∈ R. Now set w =
√

|α|v to deduce

A = αvvT = ±(
√

|α| · v)(
√

|α| · v)T = ±wwT ,

which we wanted to show.

For A ∈ S, clearly w ̸= 0. Since the first column of A only has entries in {−1, 1}, w only
has entries in {−1, 1}. From now on, we will denote the set of vectors of length n with
entries in {−1, 1} by {−1, 1}n.

We now consider when two elements of S commute. Let A,B ∈ S and A = ±vvT and
B = ±uuT . It follows that

AB = ±vvTuuT = ±v(vTu)uT = ±⟨v, u⟩vuT

BA = ±uuTvvT = ±u(uTv)vT = ±⟨u, v⟩uvT ,

where we used the fact that the product of a column with a row is a scalar, which com-
mutes. It is clear that the ± signs of AB and BA are equal, and that vTu = uTv, since
both are just dot products. A and B hence commute if ⟨u, v⟩ = 0 or if vuT = uvT .

Notice that for u, v ∈ {−1, 1}2025 ⟨u, v⟩ ̸= 0, since ⟨u, v⟩ = 1 (mod 2). Assume u, v ∈
{−1, 1}2025 and vuT = uvT . It follows that u1 · v = v1 · u, which means that u and v are
scalar multiples of one another. Since they are both elements of {−1, 1}2025 it follows that
u = ±v. In any case, we deduce that if A = ±vvT and B = uuT commute, then u = ±v
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meaning B = ±A. Since A commutes with A and −A, it follows that A,B ∈ S commute
if and only if A = ±B.

The only step remaining is to determine the number of elements of S. Observe that any
element of {−1, 1}2025 generates an element of S by Claim 2. One can check that vectors
u, v ∈ {−1, 1}2025 generate the same element of S if and only if u = ±v. Additionally, any
matrix of the form vvT has the left uppermost entry equal to 1, so in fact the ± sign in
Claim 2 is necessary. Combining these observations leads one to conclude that there are
2025 binary choices to be made; one choice regarding the ± sign in ±vvT , 2025 choices
regarding the entries of v ∈ {−1, 1}2025 and 1 correction since v and −v generate the same
element. It follows that |S| = 22025.

Since A ∈ S commutes only with A and −A, the probability that two independently
uniformly chosen matrices commute is

2
22025 = 2−2024

Interestingly enough, an analogous argument can solve a more general problem. Let D be
the set of all not necessarily symmetric 2025 × 2025 matrices of rank 1 with entries either
−1 or +1. An analogous argument in which one uses Claim 1 in place of Claim 2 can be
used to prove that elements of D commute if and only if they are equal or opposite. Hence
the symmetric condition only needs to be taken into account when calculating the size of S.

The fact that 2025 is odd made the problem somewhat easier, since the scalar product
of two vectors in {−1, 1}2k+1 is always non-zero. The only place in our argument, where
we used any properties of the integer 2025, is the calculation of the size of S and when
we deduced that no two elements of {−1, 1}2025 have dot product zero. It hence follows,
that two symmetric matrices of any dimension, that have rank 1 and entries in {−1, 1}
commute if and only if they are the same or opposite, or if the dot product of the two
vectors generating them is zero. Additionally, one now needs to count the size of the
orthogonal complement of a vector v ∈ {−1, 1}2k (clearly v isn’t in its own orthogonal
complement, which means we don’t overcount commuting matrices) in the set {−1, 1}2k.
A simple combinatorial argument proves that the size of the orthogonal complement of
any v ∈ {−1, 1}2k in the set {−1, 1}2k is (

2k
k

)
.

In the case of 2k× 2k matrices the probability of two independently uniformly at random
chosen matrices commuting hence equals

2 +
(

2k
k

)
2k

.
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2 Day 2

Problem 2.1

Let f : (0,∞) → R be continuously differentiable. Assume there exist b > a > 0, such
that f(b) = f(a) = k. Prove there exists a point ξ ∈ (a, b) such that

f(ξ) − ξf ′(ξ) = k.

Solution. The expression is reminiscent of the numerator of the formula for the derivative
of the quotient of two functions. Noting this, one can define a continuously differentiable
function g : (0,∞) → R given by

g(x) = f(x) − k

x
.

It is clear that g(a) = g(b) = 0. Using Rolle’s theorem we conclude that there exists a
ξ ∈ (a, b) such that g′(ξ) = 0. Hence

0 = g′(ξ) = f ′(ξ)ξ − f(ξ) + k

ξ2 .

Since ξ ̸= 0, the desired point has been found.
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Problem 2.2

Let N be the set of positive integers. Find all nonempty subsets M ⊆ N satisfying the
following properties:

• if x ∈ M , then 2x ∈ M ,
• if x, y ∈ M and 2 | x+ y, then x+y

2 ∈ M .

Solution. Combining the two conditions we find that the set is closed under addition.

Claim 3. If x, y ∈ M , then x+ y ∈ M .

Proof.

x, y ∈ M =⇒ 2x, 2y ∈ M. 2 | (2x+ 2y) =⇒ 2x+ 2y
2 = x+ y ∈ M.

Recall the following theorem

Theorem 2.3: Frobenius coin problem/ Chicken McNugget theorem

Let m,n ∈ N and g = gcd(m,n). Then the greatest integer divisible by g, that can’t
be written in the form am+ bn where a, b are nonnegative integers is

g ·
(
mn

g2 − m

g
− n

g

)
.

The explicit value in the theorem above is not particularly relevant, but it tells us M
must contain all multiples of its gcd from some point onwards.

Observe that M must contain some odd number, as 2 | x ∈ M =⇒ x+2x
2 = 3

2x ∈ M ,
which forces descent.

Motivated by these observations we conjecture that all sets meeting the required properties
are of the form

{d · n | n ≥ c}

for some odd d ∈ N and some arbitrary c ∈ N. These types of sets clearly meet the criteria.

Let M be any set meeting the required criteria, and let c · d be any one of its elements
with d = gcd(M). It has been shown that 2 ̸= d. We prove that (c + 1) · d ∈ M , which
clearly implies our claim.

By Theorem 2, there exists some k ∈ N, such that 2k · d ∈ M . We will prove that
∀ i ∈ {0, 1, . . . , k}

(2i + c) · d ∈ M,
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which clearly implies the desired statement for i = 0. Since M is closed under addition,
the claim is true for i = k. Assume the claim is false and let j be the largest integer in
{0, 1, . . . , k − 1} for which (2j + c) · d ̸∈ M . However

(2j+1 + c) · d ∈ M and 2 | 2j+1 + 2c =⇒ 2j+1 + 2c
2 · d = (2j + c) · d ∈ M,

which is a contradiction.
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Problem 2.4

For a real n × n matrix A ∈ Mn(R) denote by AR its counter-clockwise 90◦ rotation.
For example, 1 2 3

4 5 6
7 8 9


R

=

3 6 9
2 5 8
1 4 7

 .
Prove that if A = AR then for any eigenvalue λ of A, we have either Re(λ) = 0 or
Im(λ) = 0.

Solution. In this solution, we denote by A(i) and A(i) respectively the i-th column and
i-th row of the matrix A.

Note that the map R : Fn×n → Fn×n which maps any matrix to its counter-clockwise 90◦

rotation is linear. We may hope to find the matrix that this map defines, but such an
approach would not be practical, since we can’t for example multiply the matrix form of
the map R and a matrix A ∈ Fn×n, as they belong to vector spaces of different dimensions.
However, we may hope to express the map R with some well-known linear map from Fn×n

to Fn×n.

Claim 4. Let J ∈ Mn(R) be the square matrix with entries 1 on the main anti-diagonal
and entries 0 elsewhere. Then for A ∈ Mn(R)

AR = JAT

Proof. It is clear that AR
(i) = A(n+1−i) and that

(
AT
)(i)

= A(i). Since the i-th row of JAT

consists of elements

(⟨en+1−i, A(j)⟩)n
j=1 = (aj,n+1−i)n

j=1 = A(n+1−i),

which proves the desired identity as AR and JAT have the same columns.

We are asked to prove that if A = AR, then eigenvalues of A are either real or purely
imaginary. By the spectral mapping theorem, this is equivalent to A2 having only real
eigenvalues. Recall the following theorem:

Theorem 2.5

A real symmetric matrix has only real eigenvalues.

It is hence sufficient to prove that A2 is real and symmetric. The fact it is real is obvious
since A is real. Note that

A2 = AAR = AJAT and (AJAT )T = (AT )TJTAT = AJAT .

It follows that A2 is symmetric, which implies the desired conclusion.
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