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Naloga 1

Naloga
Dolo¢i vsa naravna stevila k, m,n, za katera velja

k!l +m! = klnl

Resitev. Ce je k > m enac¢ba nima resitev iz razlogov velikosti. Velja namrec:
En! =kl'+m! <2kl = n!l <2 = n=1.

Sledi, da je k! + m! = k!, oziroma m! = 0. To ni mogoce za naraven m.

Ce je k = m se pogoj glasi
K+ Kkl =kln!l = 2=nl = n=2.

Tako so kandidati za reSitve vse troijce naravnih stevil (k, m,n) = (k, k, 2), kjer je k € N,
za katere z lahkoto preverimo, da so resitve.

Ceje k < m je !! naravno Stevilo. Sledi

m:
k

m!
k! 4+ m! = kln! <— 1+ﬁ:n!.
Opazimo, da je desna stran enacbe skoraj vedno soda (e je n > 2 je n! sodo $tevilo), leva
stran enacbe pa je skoraj vedno liha (Ce je m > k + 2 je

m! (m —2)!
i m(m — 1)7k! :
kjer je (m,f)! naravno Stevilo, vsaj eno izmed m in m — 1 pa je sodo.)

To opazko formaliziramo. Najprej se odresimo nekaj stranskih primerov:
« Cejen =1 se enacha glasi k! + m! = k!, kar ne more veljati za m € N,
o Cejem =1 seenacba glasi k! +1 = kln!. Ker je k! > 1 je
kln! <2kl —= n!l <2 = ne{1,2}.
t Cejen =1 se enacha glasi k! + 1 = k!, in o¢itno nima resitev.

t Ce je n = 2 se enacba glasi k! + 1 = 2k!, kar pomeni k! = 1 oziroma k = 1. Ta
primer smo ze obravlavali v primeru k£ = m.

Sedaj privzamemo, da sta n in m vsaj 2. Zgornji razmislek je pokazal, da enacba ni
resljiva v primeru m > k + 2, saj je leva stran enacbe liha, desna pa soda.

Posledicno se lahko omejimo na primer £ < m < k + 2, oziroma primer m = k+ 1. Tedaj
velja
1+ (k+1)=n! < k=nl-2.
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Ali ob pogojih k =n! —2 ter m = k+ 1 =n! — 1 res vedno dobimo resitev? Enacba se
tedaj glasi

(nl —2)(n!) = (n! — 2)1 + (0! — 1)! <= (0l —2)!(n)) = (n! — 21 (1 + (n! — 1)).

Enakost je seveda izpolnjena, a ker zahtevamo, da so m,n,k naravna stevila dodatno
zahtevamo, da je n > 3, saj je tedaj k =n! —2 > 1.

Druga druzina resitev (k,m,n) = (n! — 1,n! — 2,n), kjer je n € N. ]



Naloga 2

Naloga

Naj bo n > 2. Vsako celico tabele dimenzije n X n pobarvamo z natanko eno barvo.
Vsaka celica C' ima natanko 2 sosednje celici, ki sta iste barve kot celica C'. Dolo¢i vse
mozne vrednosti n.

Resitev. Najprej opazimo, da morata biti oba soseda celice, ki je v oglis¢u kvadrata, iste
barve kot oglis¢na celica.

Slika 1: Ilustracija situacije omenjene zgoraj.

Sedaj si poglejmo nekaj majhnih primerov. Ce je n = 2 se z lahkoto prepri¢amo, da lahko
kvadrat pobarvamo z eno barvo. Pravzaprav nam pri tem ne ostane ni¢ svobode pri izbiri,
zgornja opazka prisili natanko to konstrukcijo.

Ce je n = 3 zacetna opazka zahteva, da so vse celice razen najbolj sredinske iste barve.
Sredinske celice pa ne moramo pobarvati skladno z navodili, saj so vsi njeni sosedi iste
barve.

Ce je n = 4 s pomoéjo zacetne opazke delno pobarvamo kvadrat (barve, ki izgledajo
drugace morda sovpadajo!)

Poglejmo celice v »notranjem« kvadratu. Celica (2,2) je nujno rdece barve, saj mora imeti
celica (2,1) dva rdeca soseda. Podoben argument pokaze, da moramo preostale celice v
notranjem kvadratu pobarvati tako, da »dopolnimo« 2 x 2 kvadratke z isto barvo.

Konstrukcija se posplosi; ¢e je n sod lahko n x n kvadrat razdelimo na 2 x 2 podkvadrate,
vsakega pa pobarvamo z drugo barvo. Vsaka celica lezi v nekem podkvadratku, v katerem
ima dva soseda iste barve. Morebitne druge celice, ki mejijo nanjo, pa so po konstrukciji
neke druge barve. Pogoj je po razmisleku izpolnjen.



Pokazali smo, da lahko kvadrat sodih dimenzij pobarvamo skladno s pravili. Neuspesno
barvanje v primeru n = 3 nas vodi do domneve, da kvadratov lihih dimenzij ne moremo
pobarvati na tak nacin.

Izjemno eleganten in kratek dokaz tega dejstva poteka na slede¢ nacin.

Dokaz. Denimo, da obstaja predpisano barvanje kvadrata lihih dimenzij n x n. Tvorimo
graf, vozlisca katerega so vse celice v kvadratu, dve vozlis¢i pa sta povezani natanko tedaj,
ko sta sosednji ter iste barve. Pogoj barvanja se prevede v pogoj, da je vsako vozlisce
stopnje natanko 2.

Graf razpade na nekaj povezanih komponent, ki predstavljajo povezana obmocja iste
barve. Ker je vsako vozlis¢e stopnje 2 graf razpade na cikle.

Vrnimo se k tabeli. Nepovezano s prvotnim barvanjem jo pobarvamo kot sahovnico, tako,
da bele/crne celice mejijo samo na ¢rne/bele. S tem mnozico vozlis¢ razdelimo na dve
disjunktni podmnozici. Ne samo to, povezave v grafu nujno potekajo med mnozicama
(ne znotraj njih), saj ima vozlisée neke barve zgolj sosede druge barve. Graf, ki smo ga
naredili je tako dvodelen.

Graf je dvodelen natako tedaj, ko nima lihih ciklov. Sledi, da so vse komponente nasega
grafa nujno sodi cikli, specificno ima vsaka komponenta sodo mnogo vozlis¢. Sledi, da je
skupno stevilo vozlis¢ v grafu sodo. Dosegli smo protislovie, saj n? ni sodo Stevilo.

Sledi, da v primeru lihega n tabele ne moremo pobarvati skladno s predpisanimi pravili.
O

Nekoliko preprostejsi (in malo manj magicen) dokaz, da kvadrata lihih dimenzij ne mo-
remo pobarvati skladno s pravili, poteka na naslednji nac¢in.

Dokaz. Kvadrat ponovno razdelimo na povezane komponente iste barve (tvorimo mnozico,
ki vsebuje celico neke barve, vse sosede te celice iste barve, vse sosede sosedov celice iste
barve,...). Podobno kot prej bomo dokazali, da ima vsaka povezana komponenta sodo
mnogo elementov.

Naj bo K poljubna povezana komponenta. Zacnemo v neki celici te komponente in se
premaknemo v enega izmed njenih dveh sosedov iste barve. Nato se premaknemo v
soseda trenutne celice, ki ga Se nismo obiskali. Ta proces ponavljamo, dokler ne pridemo
do zacetne celice. Pogoj, da ima vsaka celica natanko dva soseda iste barve zagotavlja,
da je nas obhod po tem ko se premaknemo iz zacetne celice natanko doloc¢en. Obhod
oc¢itno sestoji iz enakega stevila premikov kot je Stevilo celic v komponenti, zato je zadosti
dokazati sodost Stevila premikov.

Stevilo premikov severno je enako $tevilu premikov juzno, saj se v nasprotnem primeru
obhod ne bi koncal na isti celici, kot se je zacel. Analogno velja, da je stevilo premikov
zahodno enako stevilu premikov vzhodno. Ker je

[{c | ¢ je celica v komponenti}| = |{p | p je premik v obhodu}| =
=2-|{s | s je premik severno v obhodu}| + 2 - [{v | v je premik vzhodno v obhodu}|



sledi, da je stevilo celic v poljubni komponenti sodo. Ker smo mnozico vseh celic razbili
na povezane komponente, vsaka izmed katerih ima sodo velikost, je stevilo celic v tabeli
sodo. To je v protislovju z lihostjo n?. O]

]



Naloga 5

Naloga
Dolodi vse funkcije f : RT — RT, da velja

fle+y+fly)=flx)+2y Ya,yeRF

Resitev. Kot je standardno oznac¢ujemo funkcijsko enacbo s P(z,y).

Najprej nekaj zacetnih opazk:

o Funkcija slika iz pozitivnih realnih stevil v pozitivna realna stevila, kar pomeni, da
ne smemo vstaviti 0 in obratnih vrednosti (na primer y = —z), kar je v splosnem
zelo uporabno pri funkcijskih enac¢bah.

« Ce predpostavimo, da je f polinom (ali pa racionalna funkcija) je leva stran enacbe
stopnje deg(f)?, desna stran pa stopnje deg(f). Ker Zelimo enakost polinomov
morata stopnji biti enaki, kar se zgodi zgolj ¢e je deg(f) € {0,1}. Konstantne
funkcije ne resijo funkcijske enache, saj imamo na desni strani prosti ¢len +2y,
obenem pa z primerjanjem vodilnih koeficientov dobimo, da je vodilni koeficient
enak 1. To nam poda sum, da je edina resitev f(z) = x, katera je oCitno resitev.

o Prisotnost »prostega« clena 2y na levi pogosto zelo olajsa dokaz injektivnosti ozi-
roma surjektivnosti. Tudi resitev enacbe, ki smo jo nasli, je injektivna in surjektivna,
kar poda dodaten sum, da bi poiskus dokaza injektivnosti/surjektivnosti znal biti
produktiven.

Trditev. f je injektivna.

Dokaz. Denimo f(a) = f(b). P(a,b) poda f(a+ b+ f(b)) = f(a)+ 2b, P(b,a) pa poda
fb+a—+ f(a)) = f(b) + 2a. Sledi, da je 2a =2b = a =b. O

Dokaz surjektivnosti ni tako enostaven. Za vsak ¢ € R je

{z|z>flo)} € Z,

kar sledi iz opazovanja P(c,y). To pa seveda se ne pomeni, da je f surjektivna, je pa
»surjektivna od neke tocke dalje«.

Injektivnost je zelo uporabna lastnost funkcij, mi pa jo izrabimo na slede¢ nacin; name-
sto da enkrat pristejemo 2y na desni bi lahko dvakrat pristeli ¢y, nato pa enacili izraze
ter z nekaj srece dobili enacbo oblike f(---) = f(...), ki je zelo dovzetna za uporabo
injektivnosti.



P(z,y): flx+y+ fly)

)
(e2): s(ertor() -
f

P(ee3er(2) D)oo

If(x+g+f(g))+y:f<x>+zy
— fa+y+ i) =f(e+Lr (L) +L+1(2))
= I+y+f(y)=x+y+2f<g> — f(y):2f<z2/>

Zgornja izpeljava je pravzaprav le naravna posplositev primera, ko namesto pristevanja 2
dvakrat pristejemo 1.

Na tej tocki se morda zdi privlacno postaviti domnevo, da lahko dokazemo
Y
fw) =ns (2)
n
z istim postopkom. Zal se situacija ne izide za splosen n, temveé le za potence Stevila 2,
kar pa takoalitako implicira indukcija na Ze dokazani relaciji.
Relacija
x
sy =2f(3)

nam z hitro vajo iz indukcije med drugim poda povezavo med velikimi argumenti ter majh-
nimi argumenti funkcije f. To lastnost izrabimo, da dokazemo surjektivnost upostevajo¢
»surjektivnost od neke tocke dalje«.

Trditev. f je surjektivna.

Dokaz. Velja
P(Ly): f(L+y+f(y)=f(1)+2y,

kar pomeni, da so vsa realna stevila vedja od f(1) v sliki f. Naj bo z < f(1) in k =
[log2 (@ﬂ Sledi, da je 2%z > f(1), zato obstaja t(2), da je f(t(z)) = 2¥z. Posledi¢no

je
t(z
()
kar pokaze zZeleno. O

Ponovno se spomnimo na uporabnost injektivnosti, tokrat pa jo povezimo z relacijo f(z) =
2f (%) Ce vstavimo y + @ bomo na desni strani dobili 2f(z), kar je enako f(2x),
nakar lahko uporabimo injektivnost.



P<m7m>; f(x—l—f(x)—f—f(f(x))) = 2f(z) = x+f(2x)+f<f(2x)> — %

— n 2@ — 1 = f(x)+ f(f(z)) =22

Imamo razmeroma prikladno relacijo, ki vsebuje f(f(x)). Uporabimo jo tako, da naredimo
eno izmed substitucij x — f(z) iny — f(y). Izkaze se, da je druga dosti bolj produktivna

Pz, f(y): flx)+ fQy) = f(x)+2f(y) = flx+ fly) + f(f(y)) = f(z +2y).

Dosegli smo Cauchyjevo funkcijsko enacbo. Vemo, da monotonost, omejenost ali zveznost
na kateremkoli intervalu implicirajo, da so resitve linearne. Eden izmed moznih argumen-
tov, ki pokazejo linearnost f, je da f razsirimo kot liho funkcijo na celo realno os, nato
pa uporabimo omejenost na pozitivnem poltraku. Druga moznost je poiskati protislovje
privzemsi gostoto grafa f v prvem kvadrantu. Tretja moznost je sklicati se na znano
dejstvo, da omenjeni zadostni pogoji za linearnost veljajo tudi, ¢e je domena f RT.

Moznost, ki se jo posluzimo mi je, da pokazemo monotonost. Ce je 0 < a < b velja
b=a+¢ezae>0. Sledi

f(b) = fla+e) = fla) + f(e) > f(a).

Monotonost je s tem dokazana, sledi, da so vse resitve enacbe linearne funkcije z nicelnim
prostim c¢lenom.

Zelo preprosto preverimo, da izmed teh funkeij pogojem dejansko ustreza le f(z) = x.
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