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Naloga 1

Naloga

Določi vsa naravna števila k, m, n, za katera velja

k! + m! = k!n!

Rešitev. Če je k > m enačba nima rešitev iz razlogov velikosti. Velja namreč:

k!n! = k! + m! < 2k! =⇒ n! ≤ 2 =⇒ n = 1.

Sledi, da je k! + m! = k!, oziroma m! = 0. To ni mogoče za naraven m.

Če je k = m se pogoj glasi

k! + k! = k!n! =⇒ 2 = n! =⇒ n = 2.

Tako so kandidati za rešitve vse troijce naravnih števil (k, m, n) = (k, k, 2), kjer je k ∈ N,
za katere z lahkoto preverimo, da so rešitve.

Če je k < m je m!
k! naravno število. Sledi

k! + m! = k!n! ⇐⇒ 1 + m!
k! = n!.

Opazimo, da je desna stran enačbe skoraj vedno soda (če je n ≥ 2 je n! sodo število), leva
stran enačbe pa je skoraj vedno liha (če je m ≥ k + 2 je

m!
k! = m(m − 1)(m − 2)!

k! ,

kjer je (m−2)!
k! naravno število, vsaj eno izmed m in m − 1 pa je sodo.)

To opazko formaliziramo. Najprej se odrešimo nekaj stranskih primerov:

• Če je n = 1 se enačba glasi k! + m! = k!, kar ne more veljati za m ∈ N.

• Če je m = 1 se enačba glasi k! + 1 = k!n!. Ker je k! ≥ 1 je

k!n! ≤ 2k! =⇒ n! ≤ 2 =⇒ n ∈ {1, 2} .

† Če je n = 1 se enačba glasi k! + 1 = k!, in očitno nima rešitev.

† Če je n = 2 se enačba glasi k! + 1 = 2k!, kar pomeni k! = 1 oziroma k = 1. Ta
primer smo že obravlavali v primeru k = m.

Sedaj privzamemo, da sta n in m vsaj 2. Zgornji razmislek je pokazal, da enačba ni
rešljiva v primeru m ≥ k + 2, saj je leva stran enačbe liha, desna pa soda.

Posledično se lahko omejimo na primer k < m < k + 2, oziroma primer m = k + 1. Tedaj
velja

1 + (k + 1) = n! ⇐⇒ k = n! − 2.
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Ali ob pogojih k = n! − 2 ter m = k + 1 = n! − 1 res vedno dobimo rešitev? Enačba se
tedaj glasi

(n! − 2)!(n!) = (n! − 2)! + (n! − 1)! ⇐⇒ (n! − 2)! (n!) = (n! − 2)! (1 + (n! − 1)) .

Enakost je seveda izpolnjena, a ker zahtevamo, da so m, n, k naravna števila dodatno
zahtevamo, da je n ≥ 3, saj je tedaj k = n! − 2 ≥ 1.

Druga družina rešitev (k, m, n) = (n! − 1, n! − 2, n), kjer je n ∈ N.
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Naloga 2

Naloga

Naj bo n ≥ 2. Vsako celico tabele dimenzije n × n pobarvamo z natanko eno barvo.
Vsaka celica C ima natanko 2 sosednje celici, ki sta iste barve kot celica C. Določi vse
možne vrednosti n.

Rešitev. Najprej opazimo, da morata biti oba soseda celice, ki je v oglišču kvadrata, iste
barve kot ogliščna celica.

Slika 1: Ilustracija situacije omenjene zgoraj.

Sedaj si poglejmo nekaj majhnih primerov. Če je n = 2 se z lahkoto prepričamo, da lahko
kvadrat pobarvamo z eno barvo. Pravzaprav nam pri tem ne ostane nič svobode pri izbiri,
zgornja opazka prisili natanko to konstrukcijo.

Če je n = 3 začetna opazka zahteva, da so vse celice razen najbolj sredinske iste barve.
Sredinske celice pa ne moramo pobarvati skladno z navodili, saj so vsi njeni sosedi iste
barve.

Če je n = 4 s pomočjo začetne opazke delno pobarvamo kvadrat (barve, ki izgledajo
drugače morda sovpadajo!)

Poglejmo celice v »notranjem« kvadratu. Celica (2, 2) je nujno rdeče barve, saj mora imeti
celica (2, 1) dva rdeča soseda. Podoben argument pokaže, da moramo preostale celice v
notranjem kvadratu pobarvati tako, da »dopolnimo« 2 × 2 kvadratke z isto barvo.

Konstrukcija se posploši; če je n sod lahko n × n kvadrat razdelimo na 2 × 2 podkvadrate,
vsakega pa pobarvamo z drugo barvo. Vsaka celica leži v nekem podkvadratku, v katerem
ima dva soseda iste barve. Morebitne druge celice, ki mejijo nanjo, pa so po konstrukciji
neke druge barve. Pogoj je po razmisleku izpolnjen.
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Pokazali smo, da lahko kvadrat sodih dimenzij pobarvamo skladno s pravili. Neuspešno
barvanje v primeru n = 3 nas vodi do domneve, da kvadratov lihih dimenzij ne moremo
pobarvati na tak način.

Izjemno eleganten in kratek dokaz tega dejstva poteka na sledeč način.

Dokaz. Denimo, da obstaja predpisano barvanje kvadrata lihih dimenzij n × n. Tvorimo
graf, vozlišča katerega so vse celice v kvadratu, dve vozlišči pa sta povezani natanko tedaj,
ko sta sosednji ter iste barve. Pogoj barvanja se prevede v pogoj, da je vsako vozlišče
stopnje natanko 2.

Graf razpade na nekaj povezanih komponent, ki predstavljajo povezana območja iste
barve. Ker je vsako vozlišče stopnje 2 graf razpade na cikle.

Vrnimo se k tabeli. Nepovezano s prvotnim barvanjem jo pobarvamo kot šahovnico, tako,
da bele/črne celice mejijo samo na črne/bele. S tem množico vozlišč razdelimo na dve
disjunktni podmnožici. Ne samo to, povezave v grafu nujno potekajo med množicama
(ne znotraj njih), saj ima vozlišče neke barve zgolj sosede druge barve. Graf, ki smo ga
naredili je tako dvodelen.

Graf je dvodelen natako tedaj, ko nima lihih ciklov. Sledi, da so vse komponente našega
grafa nujno sodi cikli, specifično ima vsaka komponenta sodo mnogo vozlišč. Sledi, da je
skupno število vozlišč v grafu sodo. Dosegli smo protislovje, saj n2 ni sodo število.

Sledi, da v primeru lihega n tabele ne moremo pobarvati skladno s predpisanimi pravili.

Nekoliko preprostejši (in malo manj magičen) dokaz, da kvadrata lihih dimenzij ne mo-
remo pobarvati skladno s pravili, poteka na naslednji način.

Dokaz. Kvadrat ponovno razdelimo na povezane komponente iste barve (tvorimo množico,
ki vsebuje celico neke barve, vse sosede te celice iste barve, vse sosede sosedov celice iste
barve,. . . ). Podobno kot prej bomo dokazali, da ima vsaka povezana komponenta sodo
mnogo elementov.

Naj bo K poljubna povezana komponenta. Začnemo v neki celici te komponente in se
premaknemo v enega izmed njenih dveh sosedov iste barve. Nato se premaknemo v
soseda trenutne celice, ki ga še nismo obiskali. Ta proces ponavljamo, dokler ne pridemo
do začetne celice. Pogoj, da ima vsaka celica natanko dva soseda iste barve zagotavlja,
da je naš obhod po tem ko se premaknemo iz začetne celice natanko določen. Obhod
očitno sestoji iz enakega števila premikov kot je število celic v komponenti, zato je zadosti
dokazati sodost števila premikov.

Število premikov severno je enako številu premikov južno, saj se v nasprotnem primeru
obhod ne bi končal na isti celici, kot se je začel. Analogno velja, da je število premikov
zahodno enako številu premikov vzhodno. Ker je

|{c | c je celica v komponenti}| = |{p | p je premik v obhodu}| =
= 2 · |{s | s je premik severno v obhodu}| + 2 · |{v | v je premik vzhodno v obhodu}|
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sledi, da je število celic v poljubni komponenti sodo. Ker smo množico vseh celic razbili
na povezane komponente, vsaka izmed katerih ima sodo velikost, je število celic v tabeli
sodo. To je v protislovju z lihostjo n2.
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Naloga 5

Naloga

Določi vse funkcije f : R+ → R+, da velja

f(x + y + f(y)) = f(x) + 2y ∀ x, y ∈ R+

Rešitev. Kot je standardno označujemo funkcijsko enačbo s P (x, y).

Najprej nekaj začetnih opazk:

• Funkcija slika iz pozitivnih realnih števil v pozitivna realna števila, kar pomeni, da
ne smemo vstaviti 0 in obratnih vrednosti (na primer y = −x), kar je v splošnem
zelo uporabno pri funkcijskih enačbah.

• Če predpostavimo, da je f polinom (ali pa racionalna funkcija) je leva stran enačbe
stopnje deg(f)2, desna stran pa stopnje deg(f). Ker želimo enakost polinomov
morata stopnji biti enaki, kar se zgodi zgolj če je deg(f) ∈ {0, 1}. Konstantne
funkcije ne rešijo funkcijske enačbe, saj imamo na desni strani prosti člen +2y,
obenem pa z primerjanjem vodilnih koeficientov dobimo, da je vodilni koeficient
enak 1. To nam poda sum, da je edina rešitev f(x) = x, katera je očitno rešitev.

• Prisotnost »prostega« člena 2y na levi pogosto zelo olajša dokaz injektivnosti ozi-
roma surjektivnosti. Tudi rešitev enačbe, ki smo jo našli, je injektivna in surjektivna,
kar poda dodaten sum, da bi poiskus dokaza injektivnosti/surjektivnosti znal biti
produktiven.

Trditev. f je injektivna.

Dokaz. Denimo f(a) = f(b). P (a, b) poda f(a + b + f(b)) = f(a) + 2b, P (b, a) pa poda
f(b + a + f(a)) = f(b) + 2a. Sledi, da je 2a = 2b =⇒ a = b.

Dokaz surjektivnosti ni tako enostaven. Za vsak c ∈ R+ je

{x | x > f(c)} ⊆ Zf ,

kar sledi iz opazovanja P (c, y). To pa seveda še ne pomeni, da je f surjektivna, je pa
»surjektivna od neke točke dalje«.

Injektivnost je zelo uporabna lastnost funkcij, mi pa jo izrabimo na sledeč način; name-
sto da enkrat prištejemo 2y na desni bi lahko dvakrat prišteli y, nato pa enačili izraze
ter z nekaj sreče dobili enačbo oblike f(· · · ) = f(. . .), ki je zelo dovzetna za uporabo
injektivnosti.
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P (x, y) : f(x + y + f(y)) = f(x) + 2y
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Zgornja izpeljava je pravzaprav le naravna posplošitev primera, ko namesto prištevanja 2
dvakrat prištejemo 1.

Na tej točki se morda zdi privlačno postaviti domnevo, da lahko dokažemo

f(y) = nf
(

y

n

)

z istim postopkom. Žal se situacija ne izide za splošen n, temveč le za potence števila 2,
kar pa takoalitako implicira indukcija na že dokazani relaciji.

Relacija
f(x) = 2f

(
x

2

)
nam z hitro vajo iz indukcije med drugim poda povezavo med velikimi argumenti ter majh-
nimi argumenti funkcije f . To lastnost izrabimo, da dokažemo surjektivnost upoštevajoč
»surjektivnost od neke točke dalje«.

Trditev. f je surjektivna.

Dokaz. Velja
P (1, y) : f(1 + y + f(y)) = f(1) + 2y,

kar pomeni, da so vsa realna števila večja od f(1) v sliki f . Naj bo z ≤ f(1) in k =⌈
log2

(
f(1)

z

)⌉
. Sledi, da je 2kz > f(1), zato obstaja t(z), da je f(t(z)) = 2kz. Posledično

je

f

(
t(z)
2k

)
= z,

kar pokaže želeno.

Ponovno se spomnimo na uporabnost injektivnosti, tokrat pa jo povežimo z relacijo f(x) =
2f
(

x
2

)
. Če vstavimo y 7→ f(x)

2 bomo na desni strani dobili 2f(x), kar je enako f(2x),
nakar lahko uporabimo injektivnost.
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P

(
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2 = x ⇐⇒ f(x) + f(f(x)) = 2x

Imamo razmeroma prikladno relacijo, ki vsebuje f(f(x)). Uporabimo jo tako, da naredimo
eno izmed substitucij x 7→ f(x) in y 7→ f(y). Izkaže se, da je druga dosti bolj produktivna

P (x, f(y)) : f(x) + f(2y) = f(x) + 2f(y) = f(x + f(y) + f(f(y))) = f(x + 2y).

Dosegli smo Cauchyjevo funkcijsko enačbo. Vemo, da monotonost, omejenost ali zveznost
na kateremkoli intervalu implicirajo, da so rešitve linearne. Eden izmed možnih argumen-
tov, ki pokažejo linearnost f , je da f razširimo kot liho funkcijo na celo realno os, nato
pa uporabimo omejenost na pozitivnem poltraku. Druga možnost je poiskati protislovje
privzemši gostoto grafa f v prvem kvadrantu. Tretja možnost je sklicati se na znano
dejstvo, da omenjeni zadostni pogoji za linearnost veljajo tudi, če je domena f R+.

Možnost, ki se jo poslužimo mi je, da pokažemo monotonost. Če je 0 < a < b velja
b = a + ε za ε > 0. Sledi

f(b) = f(a + ε) = f(a) + f(ε) > f(a).

Monotonost je s tem dokazana, sledi, da so vse rešitve enačbe linearne funkcije z ničelnim
prostim členom.

Zelo preprosto preverimo, da izmed teh funkcij pogojem dejansko ustreza le f(x) = x.
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